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Abstract: Different data show that circulating lymphocytes possess functional serotonin and dopamine transporters 

(SERT and DAT, respectively). This papers aims to review most of the available literature on this topic, while highlight-

ing the possible role of SERT and DAT, as well as that of their substrates including antidepressants on the immune      

system. 
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INTRODUCTION 

 Serotonin (5-hydroxytryptamine, 5-HT) and dopamine 
(DA), are monoamine neurotransmitters widely represented 
in the central nervous system (CNS) of different animals 
including humans, where they modulate a variety of physio-
logical, behavioral and endocrine functions, such as appetite, 
sleep, mood, sexuality, aggression/impulsivity, biological 
rhythms, motor control, memory, learning, and the neuronal 
degeneration associated with cerebral ageing [1-6]. As a con-
sequence, therefore, monoamines have been hypothesized to 
be critically involved in the pathophysiology of a number of 
brain disorders, including Parkinson’s disease, depression, 
anxiety, schizophrenia and drug addiction [7-10]. The avail-
ability of both 5HT and DA is strictly limited by selective, 
active re-uptake mechanisms performed by specific proteins, 
the 5-HT and the DA transporters (SERT and DAT, respec-
tively), which play the major role of terminating the activity 
of the neurotransmitter, once released in the synaptic cleft 
and after the interaction with different receptors, ion chan-
nels and other structures present at pre- and postsynaptic 
level [11-13]. Not surprisingly, the transporters have at-
tracted much interest as primary targets of compounds that 
might be effective in anxiety, mood and psychotic disorders. 
As far as the SERT is concerned, this line of thought has led 
to the development of selective 5-HT re-uptake inhibitors 
(SSRIs) which, with no doubt, are one of the most successful 
pharmacological achievements of the past few decades    
[14-20]. Furthermore, the DAT represents the main target of 
psychostimulants, including addictive drugs, such as cocaine 
and amphetamines, or mazindol and methylphenidate       
[21-24], but also of neurotoxins, in particular methyl-phenyl-
piridinium [25]. Antidepressants, too, such as bupropion, 
although to a lesser extent, may bind to the DAT [26], and 
the same a few selective compounds that include the GBR 
compounds, 12909 and 12935 [27, 28]. 
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 Since neurotransmitters are also present systemically, the 
transporter proteins have been described in different organs 
and cells. The SERT has been found in intestinal epithelial 
cells [29], in blood platelets [30-38] and in blood lympho-
cytes [39, 40]. The DAT, too, is expressed in peripheral 
blood cells such as platelets [41] and lymphocytes [42, 43].  

 Most of the available literature regarding transporters in 
periphery is centered on the SERT present in platelets which 
has been characterized pharmacologically and cloned [36, 
44-49], but especially used as a reliable mirror of the same 
structure present in the CNS for investigating the role of 5-
HT in neuropsychiatric disorders. In the past three decades, 
several reports have, thus, demonstrated alterations of the 
SERT not only in several neuropsychiatric disorders irre-
spective of the diagnoses [50-54], but also in physiological 
conditions which have been linked to dimensions or psychic 
states reflecting modifications of the serotonergic activity 
which are not always dysfunctional and might even have a 
strong adaptive values, when occurring in specific moments 
of the life [43, 55, 56]. On the contrary, the literature con-
cerning the SERT and DAT in lymphocytes is just at its 
dawn, for the technical difficulties encountered in their char-
acterization [39, 40, 42, 43]. However, potentially, these 
cells are more interesting than platelets, because are nucleate 
and are a fundamental component of the immune system, so 
that, on one side, they might permit expression studies of the 
proteins, on the other to explore the role of neurotransmitters 
and their transporters within the immune network [52, 57, 
58]. A literature centered on the use of lymphocytes SERT 
or DAT in patients with different neuropsychiatric disorders 
as a peripheral marker of the same brain structure is just 
emerging [59-65]. However, data are too meager to draw any 
kind of conclusion, or to highlight the possible advan-
tages/disadvantages of lymphocyte transporters, as compared 
with those present in platelets. 

 The aim of this paper is to review the literature on the 
SERT and DAT in lymphocytes with a special focus on fu-
ture developments and applications. MEDLINE and PubMed 
(1975-2009) databases were searched for English language 
articles using the keywords 5-HT, DA, lymphocytes, SERT, 
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DAT, immune system, antidepressants, neuropsychiatric 
disorders. We reviewed papers that addressed the following 
aspects: the basic structure of SERT and DAT, their charac-
terization in lymphocytes, the role of 5-HT and DA within 
the immune system, the effects of antidepressants at their 
levels, and, finally, some hypotheses on the role of SERT 
and DAT in lymphocytes.  

STRUCTURE OF THE SERT  

 Structurally, the SERT is a 70 kDa glycoprotein with a 
sequence of a 630 amino acids with molecular weights of 70 
kDA, characterized by 12 hydrophobic membrane-spanning 
domains, with cytoplasmatic amino- and carboxy-termini, 
showing a certain degree of similarity with the DAT and 
norepinephrine, glicine, and GABA transporters [66-69] 
(Fig. 1). The SERT uses transmembrane ion gradients of 
Na+, Cl- and K+ and an internal negative membrane poten-
tial for the transport of their substrate [70-72], a mechanism 
which requires energy, is temperature-dependent, and is 
potently inhibited by tricyclic antidepressants (TCAs) and 
SSRls [36, 73] (Fig. 2). In addition to drugs that specifically 
target SERT, this transporter is also affected by cocaine, 
amphetamines, and ecstasy (3,4-
methylendioxymethamphetamine) drugs that are widely 
abused [74]. 

 The rapid modifications of the activity and surface den-
sity of the SERT have been linked to changes in its phos-
phorylation state, as it presents three phosphorylation sites 
for protein kinase of type C (PKC) and three sites for protein 
kinase of type A (PKA) [12]. PKCs are phosphorylases acti-
vated by diacylglycerol derived from the hydrolysis of mem-
brane phosphatidylinositol-4,5-bisphosphate, while PKA is 
stimulated by cyclic adenosine-monophosphate (cAMP). 
Phorbol esthers, which activate PKC, provoke a decrease in 

5-HT re-uptake, while choleric toxin or compounds which 
increase cAMP concentrations and therefore PKA, increase 
5-HT re-uptake: it can be concluded that PKC inhibits and 
PKA activates 5-HT re-uptake [75]. 

STRUCTURE OF THE DAT 

 The DAT belongs to the large transporter family just 
mentioned for SERT. It is a 80-kDa glycoprotein with a se-
quence of a 620 amino acids, which has been cloned and 
characterized [76-84]. As with other members of the family, 
molecular modeling of the amino-acid sequence of the DAT 
[85] predicts a topology of 12 transmembrane segments con-
nected by alternating extracellular and intracellular loops, 
with the N- and C- termini located in the cytosol, a large 
extracellular loop between transmembrane domains 3 and 4 
containing numerous consensus sequences for N-linked gly-
cosylation, and potential sites for phosphorilation by PKA 
and PKC within putative intracellular domains and in the N- 
and C- termini [86]. A study using cysteine/lysine-modifying 
reagents and biotinylated probe scanning has agreed with the 
proposed topology on predicting extracellular domains of the 
SERT [87]. The DAT display highest amino acid homology 
with the norepinephrine transporter (67%), SERT (49%), and 
GABA transporter (45%) [88].  

 As well as the SERT, the DAT is functionally dependent 
on the presence of external Na+ and Cl- ions, although some 
investigations revealed that its interactions with ions is con-
siderably more complex than the simple picture of two Na+ 
ions and one Cl- ion being co-transported with one DA 
molecule [89-93]. In this case also, modification of the 
transport velocity of the DAT has been reported following 
activation/inhibition of second messenger system pathways, 
through the modulation of PKA and PKC. The PKC-
mediated phosphorylation [94, 95] provoke the sequestration 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). General structure of SERT and DAT. 
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of the transport protein [96-98] and down-regulation of 
transport activity [99, 100]. 

SERT IN LYMPHOCYTES 

 An active 5-HT transport with specific pharmacological 
characteristics was described in human resting lymphocytes 
in 1994 [39]. The re-uptake was temperature, Na+ and Cl

- 

dependent and potently inhibited by the antidepressants 
clomipramine, imipramine, fluoxetine and fluvoxamine, 
which are specific for the SERT, while compounds that are 
more selective for norepinephrine and DAT, such as mazin-
dol, desipramine and GBR 19209, had a lower inhibitory 
effect. A few years later, another study showed the presence 
of a high-affinity, specific and saturable 

3
H-paroxetine bind-

ing in membranes obtained from human lymphocytes in rest-
ing conditions [40]. Different parameters indicated that 

3
H-

paroxetine labeled one site only which corresponded to the 
SERT and had the same affinity of that described in the CNS 
and platelets [101-103]. In addition, pharmacological dis-
placement studies revealed a profile overlapping with that 
obtained in the brain and platelets, since all the tested com-
pounds showed a similar rank of potency in the two tissues 
[40, 73]. A functional SERT was described also in lym-
phoblastoid cell lines, as well as in Burkitt lymphoma lines, 
where it seemed to provoke apoptosis reversed by SSRIs 
[104].  

DAT IN LYMPHOCYTES 

 Different evidences demonstrated that lymphocytes ex-
press the DAT. Faraj et al. [105] reported that freshly iso-
lated lymphocytes from human blood can transport DA 
through a cocaine-sensitive re-uptake. This re-uptake protein 
shares certain characteristics with the active transport of 
monoamine neurotransmitters in the CNS, in particular the 
saturability, since the transport follows Michaelis-Menten 
kinetics, the dependence on a Na+ and K+ gradient across 
the cell membrane, the temperature dependence, and the in-
hibition by specific compounds acting at its level. However, 
these findings were put into question by the possible impact 
of platelet contamination during the lymphocyte preparation 
and, therefore, of SERT which is predominant in platelets 
[106]. Subsequently, the lymphocyte DAT was characterized 
more deeply by means of different techniques including 
Western immunoblotting, immunocytochemistry, 

3
H-DA re-

uptake and 
3
H-GBR 12935 radioligand binding assay [42]. 

The presence of DAT in human lymphocytes was confirmed 
also by immunoreactivity [107] and by reverse transcriptase 
(RT)–PCR techniques [108]. More recently, the lymphocyte 
DAT protein was labeled by means of the binding of 

3
H-

WIN-35428, which is currently considered one of the most 
selective compounds for exploring this structure [43]. The 
pharmacological profile of the 

3
H-WIN-35428 binding 

showed that the DA re-uptake specific inhibitors, such as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). General mode of functioning of SERT. 
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WIN-35,428 itself, GBR-12909 and BTCP, were in order of 
potency, the most powerful displacers of the binding. On the 
contrary, the SSRI fluoxetine and the tricyclic antidepressant 
desipramine had a negligible effect. A specific 

3
H-DA re-

uptake was also measured by the same authors who reported 
that its pharmacological characterization was overlapping 
with that of the 

3
H-WIN-35428 binding: this would suggest 

that the two sites correspond [43]. 

WHAT ARE THE MAJOR SOURCES OF 5-HT AND 

DA PRESENT LYMPHOCYTES? 

 The first problem arising from the above-mentioned evi-
dences is that of the source of neurotransmitters, that is to 
say, from where lymphocytes take up 5-HT and DA.  

Serotonin 

 Lymphocytes have been shown to store and synthesize 
5HT [59, 109, 110]. Another possibility is that they “cap-
ture” 5-HT at inflammatory sites after its release from plate-
lets, or after stimulation of noradrenergic nerve terminals in 
lymphoid tissues, where direct contacts between the termi-
nals and immune cells have been described [111-113]. 
Again, activated T-lymphocytes, and to a lesser extent, na-
ïve-resting T-cells, may cross the blood-brain barrier, circu-
late in the brain and get easily the neurotransmitters. Finally, 
all innervated body organs, including blood capillaries, rep-
resent “meeting points” for neurotransmitters and lympho-
cytes [114].  

Dopamine 

 The major source of DA in lymphocytes are the lympho-
cytes themselves, which are capable of synthesizing DA, as 
they express the cathecolamine biosynthetic enzyme tyrosine 
hydroxylase [115-118]. In addition, lymphoid tissues are 
highly innervated by sympathetic fibers that store and release 
DA which can be taken up by lymphocytes [119, 120]. 

WHAT IS THE ROLE OF 5-HT AND DA PRESENT IN 

LYMPHOCYTES? 

 A detailed review of this topic is beyond the scope of this 
paper, and, therefore, only the major findings will be re-
ported herein.  

Serotonin in Lymphocytes 

 Besides the SERT, lymphocytes express 5HT1, 5HT1A, 
5-HT1B, 5-HT2A, 5-HT3, 5-HT3A, 5-HT7 receptors subtypes 
which probably are the substrates of different activities [121-
123]. During both physiological and pathological conditions, 
such as inflammatory processes, some specific functions of 
5-HT can be recognized. Different data show that 5-HT can 
regulate T cell and natural killer (NK) cell function; in addi-
tion, it appears fundamental for T cell blastogenesis via 5-
HT1A receptors [124]. Moreover, it seems to be involved in 
the initiation of delayed-type hypersensitivity reactions via 
5-HT2 receptors [125, 126]. Serotonin promotes the produc-
tion of various chemotactic factors, such as cytokines and 
interleukin-16 (IL-16), and protects NK cells from injuries, 
activities that appear particularly relevant during the early 
stages of the immune response [127, 128]. Further data sug-
gest that 5-HT is involved in the optimal accessory function 
of macrophages, such as in reverting the monocyte-induced 

suppression of NK cell activities [121, 127, 129, 130], or the 
ability to provide accessory help for T-cell activation [131, 
132]. Scattered data suggest that 5-HT may trigger or poten-
tiate a variety of T-cell functions in humans, in particular, 
the IL-16 secretion from CD8+ T-cells [127], the IL-2 pro-
duction [132], the enhancement of T-cell activation, through 
the PKC-dependent phospholipase-D pathway [133].  

Dopamine in Lymphocytes 

 Dopamine receptors of type 3 and 4 (D3 and D4) have 
been described in human peripheral blood lymphocytes 
through radiolabeling assays (D3, D4), while D1, D3 and D5 
receptors have been detected by means of their specific 
mRNAs [134-138]. The interaction of these receptors with 
DA or DA agonists elicit different T-cell activities. Dopa-
mine can activate human normal naıve peripheral T-cells and 
trigger their adhesion to fibronectin [139]. DA can also se-
lectively induce the chemotactic migration of naıve CD8+ T-
cells [140] and T-cell cytokine secretion, in particular, the 
TNF-alpha and the interleukin-10 (IL-10) [138]. Dopamine 
can probably also activate T-cell function indirectly, by sup-
pressing T-regulatory cells, as suggested recently [141].  

IT IS POSSIBLE TO MODULATE THE IMMUNE  

RESPONSE THROUGH THE TRANSPORTER PRO-
TEINS PRESENT IN LYMPHOCYTES? 

 As discussed above, it is now evident that functional 

SERT and DAT proteins are present in lymphocytes, and the 

same their related neurotransmitters that have been shown to 

elicit a variety of activities upon different components of the 

immune system. However, since the SERT and DAT are the 

targets of several drugs [74, 142-144], such as psychostimu-

lants and antidepressants, it is conceivable that these sub-

stances also might exert certain effects at the level of the 

immune system. The literature on this topic is quite contro-

versial and the different studies are not easily comparable, 

because reporting findings obtained in animals or humans by 

in-vitro or in-vivo experiments, particularly those involving 

d-fenfluramine, ecstasy and cocaine [145-147]. For example, 

the psychostimulant d-fenfluramine had a positive effect on 

some immune parameters in AIDS patients [148], in agree-

ment with some data in animals [149], but in sharp contrast 

with others [145, 150]. 

 Some tricyclic antidepressants and SSRIs have been 

shown to impair lymphocyte and monocyte survival [151], 

an effect perhaps depending on the doses, at least for 

fluoxetine [152-154]. This is at variance with the enhance-

ment of NK-cell activity displayed by paroxetine and 

fluoxetine in vitro [155], and by the clinical evidences that 

antidepressant treatments may revert the low NK-cell widely 

described in depressed patients [156-158]. In addition, anti-

depressants seem to possess putative anti-inflammatory 

properties, while inhibiting the production of some cytokines 

[159], so that, recently it has been proposed that depression 

is “an inflammatory state” [160, 161]. These interesting 

properties of antidepressants may suggest their potential use 

in autoimmune disorders, such as experimental neuritis [162] 

or encephalomyelitis [163]. In any case it seems premature 

to conclude whether the immune system may be considered 

an appropriate target for antidepressant development. 
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CONCLUSIONS 

 A growing wealth of different studies has demonstrated 
that lymphocytes carry functional SERT and DAT proteins 
and that their “classical” substrates, 5-HT and DA, respec-
tively, exert a series of effects on different components of 
the immune system. On one side, these evidences clearly 
support the perception that the division of our body in sys-
tems is quite arbitrary, on the other, they challenge the con-
ventional functions of transporters and neurotransmitters, 
which appear no longer confined to the brain. In fact, neuro-
transmitters produced in the nerves or in lymphocytes repre-
sent the soluble messengers linking the CNS with lymphoid 
organs, and can modulate some immune functions through 
the receptors present on the surface of immune cells. The 
most plausible hypothesis on the role of lymphocyte trans-
porters is that they can regulate the levels of neurotransmit-
ters where necessary, particularly at inflammatory sites, but 
not only, as they can rapidly circulate everywhere and even 
pass rapidly the blood-brain barrier 

 However, lymphocyte SERT and DAT represent the tar-
gets of different compounds, such as antidepressants and 
psychostimulants. If we cannot disregard the “dark side” of 
these findings, that is to say, the possibility to affect nega-
tively the immune system, although data in humans are quite 
a few, the available findings would suggest that drugs inter-
acting with lymphocyte transporters might be beneficial par-
ticularly in severe immune disturbances, such as, perhaps, 
autoimmune disorders. 
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